3.78 \(\int \sqrt{a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\)

Optimal. Leaf size=96 \[ \frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 C \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 a C \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(2*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a*C*Sin[c + d*x])/(3*d*Sqrt[a +
a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.259046, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {3046, 2981, 2773, 206} \[ \frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 C \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 a C \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(2*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a*C*Sin[c + d*x])/(3*d*Sqrt[a +
a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx &=\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 \int \sqrt{a+a \cos (c+d x)} \left (\frac{3 a A}{2}+\frac{1}{2} a C \cos (c+d x)\right ) \sec (c+d x) \, dx}{3 a}\\ &=\frac{2 a C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+A \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{2 a C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}-\frac{(2 a A) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{2 a C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.141806, size = 82, normalized size = 0.85 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (3 \sqrt{2} A \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+C \left (3 \sin \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{3}{2} (c+d x)\right )\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + C*(3*Sin[(c + d*
x)/2] + Sin[(3*(c + d*x))/2])))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 0.205, size = 248, normalized size = 2.6 \begin{align*}{\frac{1}{3\,d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -4\,C\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+3\,A\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+3\,A\ln \left ( 4\,{\frac{a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+6\,C\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \right ){\frac{1}{\sqrt{a}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{a \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/3/a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(
1/2)*sin(1/2*d*x+1/2*c)^2+3*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^
(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+3*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*
c)+a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a))*a+6*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/
sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [A]  time = 1.95112, size = 50, normalized size = 0.52 \begin{align*} \frac{{\left (\sqrt{2} \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 3 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} C \sqrt{a}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/3*(sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)*sin(1/2*d*x + 1/2*c))*C*sqrt(a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.45046, size = 375, normalized size = 3.91 \begin{align*} \frac{3 \,{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left (C \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{6 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(3*(A*cos(d*x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sq
rt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(C*cos(d*x + c) + 2*C)*sqr
t(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 4.00292, size = 236, normalized size = 2.46 \begin{align*} \frac{\frac{3 \, A a^{\frac{3}{2}} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac{2 \,{\left (\sqrt{2} C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 3 \, \sqrt{2} C a^{2}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/3*(3*A*a^(3/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*a
bs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) -
6*a))/abs(a) + 2*(sqrt(2)*C*a^2*tan(1/2*d*x + 1/2*c)^2 + 3*sqrt(2)*C*a^2)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x
+ 1/2*c)^2 + a)^(3/2))/d